BugMaps-Granger: a tool for visualizing and predicting bugs using Granger causality tests
نویسندگان
چکیده
منابع مشابه
BugMaps-Granger: A Tool for Causality Analysis between Source Code Metrics and Bugs
Despite the increasing number of bug analysis tools for exploring bugs in software systems, there are no tools supporting the investigation of causality relationships between internal quality metrics and bugs. In this paper, we propose an extension of the BugMaps tool called BugMaps-Granger that allows the analysis of source code properties that caused bugs. For this purpose, we relied on Grang...
متن کاملGranger causality
Granger causality is a statistical concept of causality that is based on prediction. According to Granger causality, if a signal X1 "Granger-causes" (or "G-causes") a signal X2, then past values of X1 should contain information that helps predict X2 above and beyond the information contained in past values of X2 alone. Its mathematical formulation is based on linear regression modeling of stoch...
متن کاملMultivariate out-of-sample tests for Granger causality
A time series is said to Granger cause another series if it has incremental predictive power when forecasting it. While Granger causality tests have been studied extensively in the univariate setting, much less is known for the multivariate case. In this paper we propose multivariate out-of-sample tests for Granger causality. The performance of the out-of-sample tests is measured by a simulatio...
متن کاملGranger causality for circular variables
In this letter we discuss use of Granger causality to the analyze systems of coupled circular variables, by modifying a recently proposed method for multivariate analysis of causality. We show the application of the proposed approach on several Kuramoto systems, in particular one living on networks built by preferential attachment and a model for the transition from deeply to lightly anaestheti...
متن کاملGranger causality revisited
This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Software Engineering Research and Development
سال: 2014
ISSN: 2195-1721
DOI: 10.1186/2195-1721-2-1